Protective effect of exogenous nitric oxide on alleviation of oxidative damage induced by high salinity in rice (Oryza sativa L.) seedlings

Document Type: Research Paper


1 Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, I. R. Iran

2 Department of Horticultural Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, I. R. Iran


To find the protective role of exogenous nitric oxide (NO) on salinity-stressed rice seedlings, a CRD-based factorial experiment with three replications was conducted in Agronomy Laboratory of the Faculty of Agricultural Sciences, University of Guilan, in 2012. The experimental design consisted of healthy and vigorous seedlings of two rice cultivars, Khazar and Goohar, the last already known as promising SA13 line, which were exposed to 0 (Control), 50 mM NaCl, 50 μM sodium nitroprusside (SNP) as NO donor solution supplemented with simultaneous 50 mM NaCl + 50 μM SNP for four days. After 4 days, electrolyte leakage and malondialdehyde (MDA) content, activities of antioxidant enzyme, destruction of chlorophyll and soluble protein content in leaves were measured in treated and control plants. The results showed that simultaneous treatment of rice leaves with SNP, suppressed the ion leakage content by 8.5% compared with the results of NaCl treatment. Furthermore, SNP increased the activities of superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and catalase (CAT). Exogenous application of NO also reduced peroxidation of membrane lipids, whereas increased the soluble protein content and chlorophyll pigments in rice leaves under salinity stress. These results suggested that NO could effectively protect rice seedlings from salt stress damaged by enhancing activities of antioxidant enzymes to quench the excessive reactive oxygen species caused by salt stress.


Main Subjects

Article Title [Persian]

نقش حفاظتی نیتریک‌اکساید برون‌زاد در کاهش خسارت اکسیداتیو القا‌شده با شوری شدید در دانهال‌های برنج

Authors [Persian]

  • سمانه اسدی صنم 1
  • محسن زواره 1
  • ابوذر هاشم پور 2
1 دانشگاه گیلان
2 دانشگاه گیلان
Abstract [Persian]

هدف این مطالعه، بررسی نقش حفاظتی نیتریک‌اکساید (NO) برون‌زاد در دانهال‌های برنج تحت تنش شوری بود. دانهال‌های قوی و سالم دو رقم برنج خزر و گوهر که پیشتر به‌عنوان لاین امید‌بخش SA13 شناخته شده بود، با محلول 50 میلی‌مولار نمک کلرید‌سدیم (NaCl)، 50 میکرومولار محلول سدیم نیتروپروساید (SNP) و کاربرد هم‌زمان 50 میلی‌مولار نمک کلریدسدیم و 50 میکرومولار محلول SNP همراه با شاهد (عدم کاربرد محلول) برای چهار روز تیمار شدند. پس از چهار روز، مقدار نشت یونی و مالون‌دی‌آلدهید (MDA)، فعالیت آنزیم‌های آنتی‌اکسیدانی، تخریب کلروفیل و مقدار پروتئین‌ محلول در برگ‌های گیاهان تیمار‌شده و شاهد اندازه‌گیری شد. نتایج نشان داد که تیمار هم‌زمان برگ‌های برنج با SNP موجب کاهش مقدار نشت یونی در حدود 5/8 درصد در مقایسه با کاربرد نمک کلریدسدیم شد. علاوه بر ‌این، SNP سبب افزایش فعالیت آنزیم‌های آنتی‌اکسیدانی سوپر‌اکسید‌ دیسموتاز (SOD)، پراکسیداز (POD)، آسکوربات پراکسیداز (APX) و کاتالاز (CAT) شد. هم‌چنین، کاربرد NO برون‌زاد موجب کاهش پراکسیده‌شدن لیپیدهای غشا، تأخیر در تجزیه پروتئین‌ها و تخریب رنگدانه‌های کلروفیل در برگ‌های برنج شد. این نتایج پیشنهاد می‌کند که NO می‌تواند دانهال‌های برنج را به‌طور مؤثری از خسارت ایجاد‌شده به‌وسیله تنش شوری با افزایش فعالیت آنزیم‌های آنتی‌اکسیدان در حذف گونه‌های فعال اکسیژن اضافی ناشی از تنش، محافظت کند.

Keywords [Persian]

  • آنزیم‌های آنتی‌اکسیدان
  • برنج
  • سدیم‌ نیتروپروساید
  • گونه‌های فعال اکسیژن
Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27, 84–93.

Ashraf, M., & Harris, P.J.C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3-16.

Beligni, M.V., & Lamattina, L. (2000). Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta, 210, 215-221.

Bradford, M.M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-52.

 Chance, B., & Maehly, S.K. (1955). Assay of catalase and peroxidases. Methods in Enzymology, 2, 764–775.

Dionisio-Sese, M.L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science. 135: 1-9.

Durner, J., & Klessig, D.F. (1999). Nitric oxide as a signal in plants. Current Opinion in Plant Biology, 2, 369-374.

Fletcher, R.A., Gilley, A., Sankhla, N., & Davis, T.D. (2010). Triazoles as Plant Growth Regulators and Stress Protectants. In "Horticultural Reviews", pp. 55-138. John Wiley & Sons, Inc.

Giannopolitis, C.N., & Ries, S. K. (1977). Superoxide dismutases I. Occurrence in higher plants. Plant physiology, 59, 309-314.

Greenland, D.J. (1984). Exploited Plants: Rice. Biologist, 31, 291-325.

Guo, F.Q., & Crawford, N.M. (2005). Arabidopsis nitric oxide synthase 1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell, 17, 3436-3450.

Heath, R.L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198.

Hoffman, L., DaCosta, M., Ebdon, J.S., & Zhao, J. (2012). Effects of drought preconditioning on freezing tolerance of perennial ryegrass. Environmental and Experimental Botany, 79, 11-20.

Hung, K.T., & Kao, C.H. (2003). Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. Journal of Plant Physiology, 160, 871-879.

Key, L.J., Lin, C.Y., & Chen, Y.M. (1981). Heat shock proteins of higher plants. Proceedings of the National Academy of Sciences of the United States of America, 78, 3526-3530.

Kopyra, M., & Gwozdz, E.A. (2003). Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiology and Biochemistry,41, 1011-1017.

Koyama, M.L., Levesley, A., Koebner, R.M.D., Flowers, T J., & Yeo, A.R. (2001). Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiology. 125: 406-422.

Levitt, J. (1980). Responses of plants to environmental stresses. Academic Press, New York. pp. 497.

Li, Q.Y., Niu, H.B., Yin, J.. Wang, M.B., Shao, H.B., Deng, D.Z., Chen, X.X., Ren, J.P., & Li, Y.C. Li. (2008). Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloids and Surfaces B: Biointerfaces,65, 220-225.

Mittler, R., Vanderauwera, S., Gollery, M., & Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490-498.

Nakano, Y., & Asada K. (1981). H2O2 is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867-880.

Pagnussat, G.C., Lanteri, M.L., & Lamattina, L. (2003). Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiology, 132, 1241-1248.

Rubbo, R., Radi, H.R., Anselmi, D., Kirk, M., Barnes, S., Butler, J., Eiserich, J.P. & Freeman, B.A. (2000). Nitric oxide reaction with lipid peroxyl radicals spares alphatocopherol during lipid peroxidation. Greater oxidant protection from the pair nitric oxide/alpha-tocopherol than alpha-tocopherol/ascorbate. The Journal of Biological Chemistry, 275, 10812-10818.

Selote, D.S., & KhannaChopra, R. (2010). Antioxidant response of wheat roots to drought acclimation. Protoplasma, 245, 153-163.

Sharma, S.S., & Dietz, K.J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14, 43-50.

Shi, S.Y., Wang, G., Wang, Y.D., Zhang, L.A., & Zhang, L.X. (2005). Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide, 13, 1-9.

Singh, H.P., Batish, D.R., Kaur, G., Arora, K., & Kohli, R.K. (2008). Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environmental and Experimental Botany, 63, 158–167.

Siringam, K., Juntawong, N., Cha-um, S., & Kirdmanee, C. (2009). Relationships between sodium ion accumulation and physiological characteristics in rice (Oryza sativa L.) seedlings grown under iso -osmotic salinity stress. Pakistan Journal of Botany, 41, 1837-1850.

Song, L., Ding, W., Zhao, M., Sun, B., & Zhang, L. (2006). Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Science, 171, 449-458.

Tian, X., & Lei, Y. (2006). Nitric oxide treatment alleviates drought stress in wheat seedlings. Biologia plantarum, 50, 775-778.

Tuna, A.L., Kaya, C., Dikilitas, M., & Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany, 62, 1-9.

Uchida, A., Jagendorf, A.T., Hibino, T. Takabe, T., & Takabe, T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 163, 515-523.

Yazici, I., Türkan, I., Sekmen, A.H., & Demiral, T. (2007). Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental Botany, 61, 49-57.

Yoshida, S., Forno, A.D., Cook, J.H., & Gomes, K.A. (1976). Laboratory Manual for Physiological Studies of Rice, (3rd ed.). The International Rice Research Institute, Los Banos, Laguna, Philippines.

Zheng, C., Jiang, D., Liu, F., Dai, T., Liu, W., Jing, Q., & Cao, W. (2009). Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environmental and Experimental Botany, 67, 222-227.